

Alpha Magnetic Spectrometer (AMS - 02)

Critical Design Review

May 12 - 16, 2003

Welding & Brazing Requirements and Certification

Dan Rybicki (281) 244-5181

AMS-02 Welding & Brazing Requirements

- Super-Fluid Helium Tank
- Integral Plumbing Tubing and Fittings
- Vacuum Case
- Trunnion Bridge Beams (for USS)
- Ring Imaging Cherenkov Counter

LOCKHEED MARTIN

AMS-02 Welding & Brazing Requirements

• Welding and brazing governed by NASA, Military, or industry standards as applicable to the material being welded/brazed or process used:

```
- NASA-STD-5006 (Top level - Flight Hardware)
```

- MSFC-SPEC-504 (Fusion Welding Aluminum)
- MSFC-SPEC-560 (Fusion Welding Steels & CRES)
- NASA/JSC PRC-0014 (Friction Stir Welding)
- MIL-STD-2219 (Fusion Welding)
- ANSI/AWS C3.x (Brazing Specifications)

AMS-02 Welding & Brazing Requirements

 To assure mission safety, all welding and brazing procedures and personnel qualifications/certifications are required from the fabricating vendors for review by NASA/LMSO prior to commencement of welding and/or brazing operations.

Super-Fluid Helium Tank

Super-Fluid Helium Tank

- Space Cryomagnetics Limited, Culham, England
- 5083 aluminum alloy
- All pressure retaining welds are full penetration no fillet welds
- Wherever possible, welds made using automated equipment ensures best control of critical process parameters
- Weld joints utilize thickened weld seam cross sections to compensate for "knockdown" of as-welded properties of base material and to assist in fitup
- Weld joint designs <u>do not</u> prohibit the inspectability of the welds by standard NDE techniques (penetrant and radiographic inspection)
- Gas Tungsten Arc Welding (GTAW) is selected process
- 5183 Aluminum filler alloy is selected filler alloy

Super-Fluid Helium Tank

Integral Plumbing Tubing & Fittings

- TRD gas, thermal control, cryogenic fluid, and warm Helium gas systems
- 300 series "L" grade CRES and 6xxx aluminum alloys
- Dissimilar alloy weld joints for TTCS and SFHe tank to plumbing transitions
 - Explosion welding and/or inertia welding (friction based process)
 is the process of choice for joining (aluminum to CRES alloys)
- Weld joint design gives preferential consideration to automated Orbital Tube Welding techniques (using GTAW)
- Weld joint designs <u>do not</u> prohibit the inspectability of the welds by standard NDE techniques (penetrant and radiographic inspection)
- Some components being considered for brazing

- 2219 aluminum alloy
- 2 identical circumferential welds at opposing ends of inner cylinder
- Full penetration butt joint design utilizes integral backing. This feature provides:
 - precise control of joint fitup (built in alignment mechanism),
 - ability to "contain" the internal weld bead penetration to ensure the cold mass "keep in" zone is not breached,
 - latitude for weld rework (2X) without loss of the conical flanges
- U-groove butt joint design provides excellent control over weld penetration and seam tracking
- 2 pass weld
- 2319 filler alloy
- Joint design determined to be 100% inspectable by surface and subsurface NDE techniques. Fluorescent Penetrant Testing (PT) and specialized Ultrasonic Testing (UT) techniques developed by LMSO/NASA

Vacuum Case (Cont'd)

- Gas Tungsten Arc Welding (GTAW)
- Welding shall be accomplished with automated methods
- Flat position welding
- Welding shall take place by rotating the VC and utilizing a fixed welding electrode
- Continuous clamp tooling at the weld joint is expected to be used to control localized weld joint distortion and mismatch
- Weld reinforcement removed flush to surface of inner cylinder
- Manual welding rework techniques have been developed to support potential welding rework/repair on-site at vendor facility. Automated weld repair techniques may also be used.
- Multiple weld reworks (up to 2x past the original weld) exhibit acceptable mechanical properties

Vacuum Case (Cont'd)

Vacuum Case (Cont'd)

- VC welding and inspection procedures and techniques have been baselined and developed by Lockheed Martin (LM) and NASA (Structural Engineering Division SED) in Houston.
 - Development effort included establishing as-welded mechanical properties (with and w/o weld reinforcement) from which a weld design allowable value was specified
- Transfer of this technology and all procedures will be accomplished via collaboration of LMSO and subcontractor personnel, on-site at subcontractor facility to minimize fabrication problems and ensure highest probability of success

LOCKHEED MARTIN

- Integral components to Unique Support Structure (USS)
- Primary load bearing structure is classified fracture critical
- 7050 T7451 Aluminum
- Each beam incorporates 2 opposing full penetration butt joints located longitudinally about the neutral axis
- Friction Stir Welded + full postweld heat treatment (patent pending process)
 - Replaces riveted design
 - Solid state welding process, no filler metal required
 - Final postweld heat treated material exceeds MIL-HDBK-5 "A" basis properties for T7451
 - Heat treatment successfully minimizes stress corrosion cracking (SCC) potential
- Process was developed and qualified by LMSO and NASA/JSC over an 18month period
- Hardware is 100% inspected using Fluorescent Penetrant (PT) and Radiographic (RT) Testing

Dan Rybicki 281-244-5181 Daniel.rybicki@jsc.nasa.gov

Critical Design Review

Friction Stir Welding

Friction Stir Welding

Ring Imaging Cherenkov Counter (RICH)

- Soft iron and Vacoflux Co-Fe Alloy (~50% Co and 50% Fe)
- Essentially non-structural welding
- GTA Welding (w/o filler metal) is proposed joining process
- MIL-STD-2219 to be the guideline for qualifying and certifying the production welding process and procedure to ensure capability